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Abstract

The influence of a set of satellite oscillators on the response behavior of a
master oscillator, to which the set is coupled, is of fundamental significance to
structural acoustics and beyond. The focus is largely on the induced loss factor
that the satellite oscillators generate in the impedance of the master oscillator.
Much of the research work performed on behalf of this investigation employed
basically sprung-masses for the satellite oscillators. A sprung-mass is a primitive
type of satellite oscillator and, as such, limitations are imposed on the range of
applicability of these research works. In this paper more elaborate satellite
oscillators are introduced; and, especially, a wider range of coupling forms and
strengths are investigated. A number of new insights are, thereby, obtained. In
particular, this paper is to facilitate further studies of the relationships among the
linear impedance analysis (LIA), the energy analysis (EA) and the statistical
energy analysis (SEA). These studies are in progress and are to be reported

subsequently.




Page 3

I. Introduction

In a companion paper, designated as Reference 1, the complex is specified in

terms of the impedance Z_ (@) of the isolated master oscillator, the impedance
(iom,)of the (r)th isolated satellite “oscillator” and the coupling impedance
(k, /iw); the coupling is between the master oscillator and the satellite oscillator.

This complex is sketched in Fig.la [2-11]. In this complex, the satellite
oscillators remain uncoupled to each other. The purpose in the present paper is

to introduce a significant extension in scope. In this extension the isolated
master oscillator remains the same. An isolated satellite oscillator, the (r)th, is
specified by the impedance Z,(w) that may consist of both a mass and a
stiffness control term. The coupling of this satellite oscillator to the master
oscillator is specified by the coupling impedance Z_ (@) and a gyroscopic
coupling coefficient (G,) [12,13]. The coupling impedance Z_, (@) consists of a

mass and a stiffness control term. A complex of this type is sketched in Fig. 1b.

The mass and the stiffness control terms in this complex are related in the forms

K =K,(+in,) K,/ M) = a?, (1a)
ko =k (+in,) (kor/my) = @7 (1b)

kop = koer (I+i775,) (koo /) = @F (Ic)
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where the pairs {M,K}, {m, ,k,}, and {m, ,k, } are, respectively, in reference

to the master oscillator, to the (r)th satellite oscillator and to the coupling
between them. The parameters (7,), (77,), and (7,,) are the corresponding

stiffness control loss factors, respectively. To complete the definition of the

. coupling, the mass (m,)and the gyroscopic coefficient (G,) need to be

specified [12, 13]. These are specified through the coupling parameters which

are defined in the normalized forms

Mg = (Mg, Im,) ; g = [Gr/(wo m,)], (1d)
respectively. With the assistance of Fig. 1b, the linear equations of motion of the

master oscillator in situ and of a typical satellite oscillator in situ are derived

R
Z3(@Wo @)+ 2., (@) V(@) + [Z5 () - G, 1V, (@) = (), (2a)
1

[Z, (0)+ Z (@) V(@) +[Z5.(@)+G, V(@) =0, (2b)
respectively, where V(@) and V,(w)are the responses of the mass (M) of the
master oscillator and the mass (m, ) of the (r) th satellite oscillator, respectively,
(R) is the number of satellite oscillators that are coupled to the master oscillator,

F,(w)is the drive that is applied externally to the master oscillator; the satellite

oscillators are not driven externally, Z2(w) is the impedance of the master

oscillator in isolation
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Zo(@) = (o M)1-() 2 (+in,)]; y=(o/a,), (3a)

Z,(w)is the impedance of the (r) th satellite oscillator in isolation

Z,(@) = (om)1~(z,)* A+in)]; %, =(@,/0,); z =(x%/y), (3b)
Z,,(w) is the impedance of the coupling between the master oscillator and the
(r) th satellite oscillator

Zo (@) = ((om,) [y ~(2,)” (1+175,)]
Tiop = (M I 1,) 5 Xop = (@0 10,)3 2oy = (5r 1), Go)
Z,(w) is an impedance that is related to the coupling impedanceZ , (w);
namely
Zop (@) = (@ m, [y +(2,) (1417, )], (3d)
and (m, ), (x.), (1,,), and (G,)are defined in Egs. (1) and (2) [12]. The

superscript (o) is reserved to designate quantities that pertain either to the master
oscillator in isolation or to satellite oscillators under certain and definitive

impositions. Thus, for example, from Egs. (2a) and (3a), one may state
Z3(0)V3 (@) = P(@), 4

where V/(w)is the response of the master oscillator in isolation. By a

straightforward algebraic manipulation of Eq. (2) one derives

Zo(@) Vo (@) = F(@) ; V(@) = B,(0)V, (@) , )
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where
R )
Zy(®) = Z3(@) + D [{Z,(0) Z, (@)} +(00r ) 1 (2, (@) + Z,p ()T (6a)
1
B, (#) =[Z5(®) + G, 1[Z,(®) + Z ()], (65)
(ch )2 = 4mcr kcr + (Gr )2 ’ (6¢)

and the quantities Z2(w), Z, (@), Z,, (®)and Z.,.(w)are stated explicitly in Eq.

(3). Indeed, from Egs. (1), (3) and (6) one obtains
Zy(®) = Z,(y) = (o M)[1-() > {[1-S))+iln, +7,(D]] , (7a)

B(@) = ~ [, + (z,)* (L +in,,) - i(, /¥)] «

[A + 7, )~ (2, ) A+img, )T, (7b)

where

) A+ 1) = (5,2 (L + i7) + (3,0 (1+i7g,y), (8a)

R
[ = inM1= ) 3 A A1l - (z.)* A + in,)] »
1

[, - (Zcr)2 (A +in,)]- (g, /Y)z} i

[+ 7g) = ()2 (L +im,, )T} (8b)
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and, again

Zy =X, 1y);  z,=(x1y); 25 =(x,/¥);

@er 1 9) = 47 (20 A+ i) + (B 19) 3 Gor =[O N@om)] (80)
One notes that the compound coupling parameter (g, ) is a functional of the
mass and gyroscopic coupling parameters (i, )and (g, ), respectively. These

coupling parameters are defined in Eq. (1d). One also notes, with satisfaction,

that the dependence of the terms in the sum on the gyroscopic coupling
parameter (g, )is quadratic so that the sign assigned to the gyroscopic coefficient
(G,) plays no role in the influence of the individual satellite oscillators on the

impedance of the master oscillator. The gyroscopic coupling is in quadrature to
both, the mass and the stiffness control couplings.

Examination of Egs. (7) and (8) shows that the normalized impedance that the
satellite oscillators collectively induce on the master oscillator may be cast in
term of the two-vector {S(»),7,(¥)} (R), which is a function of (R), as
indicated. The evaluation of this two-vector, however, is predicated on explicitly

specifying the two-vector {x,,,7,, }(R), its two supplemental components
{x,, n,}(R) and {x, 7, }(R)and finally assigning the compound coupling
(g.;). The two-vector {x,,, 7,,.} (R)is designed, for the sake of convenience, to

stay fixed with respect to variations in the index (). In this design, the springs,

that are placed on either side of the mass of a satellite oscillator, are set to be
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similar. With this design, Eq. (8b) is evaluated. In this paper the induced
reactive factor S(y)is not considered, here the prime interest is focused on the
induced loss factor 77,(y). The induced loss factor 7,(y) is examined for a
variety of coupling forms and coupling strengths as well as for a number of
values of the modal overlap parameters (b,) and (b,,)associated with the loss
factors 7, and 7,,, respectively [1]. By and large, (b,)is set equal to (5., )and
they are equated to (b); b=b,=b,. The simplifying equalities are imposed
without considerable loss in generality. Using Eq. (8b), the exact evaluations of
1ns(y) are executed for three values of (b); b= (0.1), (2.0) and (10). In these
evaluations one finds that 7,(y)is a function (b). On the other hand, the first
order approximation of 7,(y), designated by#n;(y), that is derived from the
replacement of the summation in Eq. (8b) by an integration, is found to be
independent of (b). The evaluations are graphically displayed; three exact
evaluations for the three values of (b) and the corresponding first order
approximation of 7,(y)are superimposed in each of the displays. The com-
parison between these four evaluations can thus be made at a glance, assisting
greatly in the interpretation of the data that is computed and displayed. In the
frequency range of concern, when (b) is small compared with unity the levels in
the exact evaluations of 7,(y)undulate, as a function of (y). (The frequency
range of concern spans the resonance frequencies of the satellite oscillators.)

The excursions in the undulations increase with decrease in (b). It is argued
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that the first order approximation constitutes the mean-value averaging of the
undulated levels of 7,(y) when (b) is small compared with unity and, again, this

mean-value curve is independent of (b) [1, 14]. As (b) approaches and increases

- above unity the undulations in the exact levels of 7,()) are suppressed and the

phenomenon of erosion commences and increases. In the frequency range of

concern, for these increasing values of (b), erosions are manifested by
progressive decreases of the levels, in the exact evaluations of 7,(y), from the

levels of the corresponding first order approximation [2, 3].




Page 10

II.  Resonance Frequency Distribution of and Assignment of

Individual Loss Factors to the Satellite Oscillators

It has been argued that the coupling between two oscillators may cause a shift
in the resonance frequency that each has in isolation. Indeed, it was suggestéd
that this shift may be used to determine the “coupling strength” [15, 16]. One
may then question as to what exactly are these shifts and are they signiﬁcant.A
The shifts, as such, and the implications that they may harbor are not addressed
in the present paper; here these shifts are overridden by design. The design
intends to derive a suitable resonance frequency distribution and a proper

assignment of individual loss factors to the satellite oscillators. The design is

expressed, then, in terms of the two-vector {x,,, 7,,}(R), where (x,,)is the
normalized resonance frequency and (1,,)is the loss factor associated with the

(r)th satellite oscillator. Examination of Eqs. (7) and (8) shows that the nor-
malized resonance frequencies of the satellite oscillators, in situ, are ascertained

by satisfying the equality

A+ )P = ()% A+ )= (2005 () =) + (). (9a)

As in Reference 1, here too (x,,)is assigned a priori with equal numbers of

resonance frequencies on either side of the resonance frequency (@, )of the
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master oscillator and the distribution is aligned in ascending order; namely

Xpp S Xgq 5 g=@r+1); 1< r< (R-1). ' (9b)
A scheme that simultaneously satisfies Eqgs. (9a) and (9b) and thé mid-point just
imposed, demands a supplemental condition of design between the two spring

stiffnesses that support the mass of a satellite oscillator. [cf. Fig 1b.] This

condition of design requires that
(%) = (1+ M) for F=(1/2), (9¢)
where, in Eq. (9¢), () may be allowed a continuous connotation [1]. Consulting

Reference 1 and using Eq. (9a), one may_ express the loss factors that are

associated with the () th satellite oscillator in the forms
7, =1b,/2(5,)210(x,)*/0r]; ey =Iber /2(x,)°1[0(x,0)? /0] 5
_ 21 2 2
Urr - [(xrr) ]_ {(xr) ”r + (xcr) ﬂcr}a (10)
where (b,) and (b, )are the modal overlap parameters assigned to the back

spring and the fore spring. These two springs support the mass (m,). [cf. Fig.

1b.] For the sake of simplicity and computational advantage, the stiffness on
either side of the mass of a satellite oscillator are assumed to be “similar” in the

sensc

(5) = @) () () = @) (9); (x) = (@, + )2 (x9), (D)

where (a,) and (o, )are dubbed the spring factors. In keeping with the

definitions of (i, ) and (g, ), as the mass coupling parameter and the gyroscopic
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coupling parameter, the spring factor (@) may be designated the stiffness

coupling parameter. It is conducive to specify (x°) in a form that is compatible
with one of the forms introduced in Reference 1; namely
x7 = [+{1- 27} y(ROT 2, (12)
where
F=r(R+D7; R=R®R+D; y®=[/2B); <1,  (13)
and (r) may be discrete; 1<r <R, or continuous () < < (R + £) with £ <1.
It should be appreciated, however, that although in this paper Eq. (12) is cast in
stone, other forms for (x;') may be readily introduced and similarly manipulated.
Also and similarly, as introduced in Reference 1, the normalized mass (m,) of

the (r)th satellite oscillator is assumed to be independent of (») and to be of the

form
R
i, = (m, /M) = (M, M)R); My =Y (m,). (14)
1

With the intended exceptions of the last section in this paper it is convenient,

without a great loss in generality, to assume that the spring factors
(o) and (a,, ), the éoupling parameters (g,) and (7#7,,) and the modal overlap
parameters (b,) and (b,,.) are to be independent of (r) ; namely

G =a; Q=0 E =F; My=m; b=b,=b, 15)

and it is observed, as already intimated, that the modal overlap parameters (b, )
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and (b,,) are set equal to (b). [cf. Appendix A.] From Egs. (9¢), (10), (11) and

(12), one then finds
(@+a)=0+m,), (9d)
Ty =N = Ty =) 9(F)=G/7) [y (R (21, (16)
where
b =[(zb) R+D)7']. o 17)

Under this imposition, the two-vector {(x,,), (7,,)} (R) assumes the simple form

(), (1)} ®) = {(A+)!"? (&), 1P} (18a)

and, if further, the mass coupling parameter (/, ) is negligible; (m,) <<1, then
{G), 7)) (R) = {(x7), n(F)}, (18b)
where the superscript (0) in (x,,) and (7,,)recognizes that (x;.)and (7, )are
restricted to specific impositions. [cf. Eq. (4).] With R=27 and m, =0, Eq.
(18) is evaluated and depicted in Fig. 2a, as a function of (7); Fig. 2a.1 depicts

(x,,)and Fig. 2a.2 depicts (7,,). In Fig. 2a the modal overlap parameter (b) is
increased from (0.1) to (2.0) and then onto (10). To these changes(7,, ) increases
by a factor of (20) and then by a factor of (102) , Whereas, to these changes in
(b), (x,,)remains intact. With R =7 and m,=0, Eq. (18) is evaluated and
depicted, in the format of Fig. 2a, in Fig. 2b. On the other hand, with R =27,

but with m,=0.75, where, for example, in addition ¢ =1.75, a, =g, =0, Eq.
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(18) is evaluated and depicted, in the format of Fig. 2a, in Fig. 2c. It is noted that
for a continuous r, except for obvious end conditions, Figs. 2a.1 and 2b.1 are
identical. However, Figs. 2a.2 and 2b.2 are not identical. On the other hand, it is
noted that Figs. 2a.2 and 2c.2 are identical, however, Figs. 2a.1 and 2c.1 are not

identical. The commonalties and disparities among Figs. 2a, 2b and 2c, are as
expected. [It is also noted, in passing, that (x,,) and (7,,), stated in Eq. (18) are
independent of the gyroscopic coupling parameter (g, ).]

It remains then to use the two-vector stated in Eq. (18) to evaluate the induced
loss factor 7,(y). Indeed, using Eq. (18) in Eq. (8b), one derives the more

explicit expression for 7,(y)in the form

R )
7s(») = - (»)*Im {Zm, {1-a(z2)* {1+in(F)}] [, —a,(z2)* {1+in(F)}]
1
— 4, o, (20) {1+in(F)}—(8/ p)*} »

[(1+7,) - (@+a, ) (z0)* {1+in(F)} T }; z; =(x1y), (8d)

where (7,), (8), (7). (@), (@,), (x7), () and 7(F) are stated in Egs. (1d), (3a),
(11), (12), (14) and (16), respectively. The computations of 7,(y) are largely

carried out assigning the standard values

(M, /M)=10"",b=(0.1) andR=27, (19)
s
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where (M) is stated in Eq. (14), (b) is the modal overlap parameter and (R) is
the number of satellite oscillators in the set. When these standard assignments
are deviated from, specific mentions are to be rendered, notwithstanding that, at

times, the employment of these standard values may be reiterated.
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III.  Revisiting the Results Presented in Reference 1

It may be useful, at this stage, to reproduce results that are depicted in

Reference 1. To this end, the following impositions are rendered

a=0; a =1, m, =0; g, =0. (20)
These impositions render the complex commensurate with that defined in
Reference 1 and sketched in Fig. 1a. [cf. Fig. 1b.] For these impositions, Egs.
(16) and (18b) and Fig. 2a are validated. One finds that Figs. 2a.1 and 2a.2 are

akin to Figs. 3a and 7a of Reference 1, respectively. In addition to evaluating the

two-vector specified in Eqs. (16) and (18b), the corresponding induced loss

factor 779 (y) is evaluated using Eq. (8d) and the assignment stated in Egs. (19)
and (20). Again, the superscript (0) in 7, () indicates that the evaluation is

restricted to specific impositions. This evaluation of 7?(y)is depicted in Fig. 3a.

The modal overlap parameter (b) is increased from the value of (0. 1) to (2.0) and

then onto (10) and 7J(y) is evaluated and depicted in Figs. 3b and 3c,
respectively. The identity of Figs. 3a and 3b with Figs. 5a and 6a of Reference 1,
respectively, is clear. In particular, the undulations that exist in Fig. 3a and the
suppression of these undulations in Fig. 3b corresponds to a phenomenon that is
discussed in detail in Reference 1. Figure 3¢ does not have a counter part 'in

Reference 1. This figure is included in order to bring in another phenomenon;
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the phenomenon of erosion that may beset the induced loss factor 7, (y) [1-3]. It

transpires- that mean-value averaging of levels of 7,(y), for modal overlap

parameters (b) that are small compared with unity, coincide and are thus

independent of (b) [1, 14]. This coincidence is illustrated in Fig. 3d. In this

figure 7, (y) is depicted for three small values of the modal overlap parameter

(b); b=1(0.01),(0.1) and (0.3). The coincident curve representing the mean-

values of 7, (y) for all small values of (b); b << (1.0), clearly emerges in Fig.

3d. For reasons that are explained subsequently, the curve coincident with these

mean-values is dubbed (FOA). An erosion is here a phrase to describe deviations

of the levels of 7,(y) from these mean-values when (b) approaches and

increases beyond the value of unity. An erosion is then a dependence of the

levels of 7, (y) on (b) as this parameter approaches and exceeds unity. To bring

into focus the existence and nature of erosion for 7, (y), Figs. 3a, 3b and 3c are
overlaid in Fig. 3e. Also, superimposed on Fig. 3e is the curve just designated
(FOA). The presence of erosion, as just described, is thus revealed in Fig. 3e. It
is apparent that erosions commencé at the edges of the normalized frequency
range; the higher the value of the modal overlap parameter (b) above unity, the
more the inroad from the edges into the frequency range. (The frequency range
of reference is that spanning the resonance frequency distribution of the satellite

oscillators.) Figure 3e, however, shows that there is hardly any erosion at and in
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the vicinity of y=1. One is reminded that this is precisely the normalized
frequency region where 7,(y)potentially plays the more significant role in
controlling the response behavior of the master oscillator. To cause an erosion at

and in the vicinity of y=1, the normalized overlap parameter

(b); b =[(xb)(R+1)"'], needs approach and exceeds unity [1-3]. This extreme
case of erosion is illustrated in Fig. 3f In this figure the only change, in
parameters that specify the complex assigned to Fig. 3e, is the number(R)of
satellite oscillators. The number (R) is (7) instead of (27), so that for b = 10,

(b) comfortably exceeds unity in Fig. 3f. After this brief digression, it is time to

return to consideration of Reference 1 and beyond.

The limited scope of Reference 1 curtails the modeling and the analysis of the
complex there considered, notwithstanding that complexes employed to date are
largely subjected to similar limitations [2-11]. A poignant question arises: what
is fresh about the complex defined herein as compared with the complex defined
in Reference 1? Whereas in Reference 1 a satellite oscillator in isolation is
characterized by a mere mass control term, here it is characterized by the
oscillator impedance Z, (@), as stated in Eq. (3b). This oscillator, in addition to
the mass control term, may also possess a stiffness control term. Moreover, the
coupling impedance Z_, (@), as stated in Eq. (3¢), may, in addition to the
stiffness control term, possess also a mass control term. Finally, the coupling

between a satellite oscillator and a master oscillator may be allowed to include a
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gyroscopic control term [12, 13]. Obviously, the complex sketched in Fig. 1b
and formulated in Egs. (5) — (8) is more versatile than that in Reference 1, as
sketched in Fig. 1a. It may be useful, therefore, to investigate a few of the
attributes of this versatility even under the similarity conditions imposed in Eq.

(11) and the simplifying assumptions proposed in Egs. (14) and (15).
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IV.  Various Coupling Forms and Coupling Strengths

It is of interest to evaluate the induced loss factor n,(»), as a function (y), for
a variety of selected coupling forms and coupling strengths. The coupling forms
are defined according to whether the coupling is dominated by either a stiffness
coupling, a gyroscopic coupling, a mass coupling or combinations of these
coupling types. The coupling strengths of these forms are determined by the
values of the coupling parameters; the stiffness coupling parameter (a.), the
gyroscopic coupling parameter (g); g, = g, and the mass coupling parameter
(m.). The values of these coupling parameters may be categorized from
weaker-coupling, to moderate-coupling onto stronger-coupling in the range of ‘
values 0f 0.03, 0.15 and 0.75, respectively. In this categorization, the coupling of
the satellite oscillators to the master oscillator, defined in Reference 1, is of
stiffness control coupling form; ie., a, 20, g = m,=0, and of (very) strong
coupling strength; namely, o, =1.0[@=0.0.]. Such a coupling form and a
coupling strength define satellite oscillators commonly designated sprung-masses
[1-11]. The new evaluations in this paper are exhibited in Figs. 4-7. Of
significance are not only the variations in the coupling forms and in the coupling
strengths, but, also, the influence that changes in the modal overlap parameters
have on the nature of the induced loss factor 7,(y). A first set of figures is
evaluated with b = (0.1), a second with 5=(2.0) and a third with b=(10). A
major feature, common to all evaluations, is that the undulations in the first set,

for which 5=(0.1), is suppressed in the second and in the third, for which
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b=(2.0)and b=(10), respectively [1]. Figures 4-7 are cast in the format of Fig.
3e; corresponding figures in the three sets are overlaid so that the undulations in
the first set and their suppression in the second and third are observed at a glance.
Another major feature, common to all evaluations, is that the erosions, discussed
briefly in Section III with respect to 7,(y) and depicted in Figs. 3e and 3f, thread
all figures. It is noted that when b = [(ﬂ'b)(R-i—l)_l] approaches and exceeds
unity, erosions occur even at and in the vicinity of y=1. These extreme
erosions, however, in addition to the dependence on (b), seem to carry a slight
dependence on the coupling forms and strengths. These dependencies, which are
more clearly apparent when the coupling is weak; e.g., in Figs. 6b and 7d, are, at
this stage, merely noted. Supplementally, some of the emerging details in Figs.

4-7 may be summarized as follows:

1. The format of Fig. 3¢ is reproduced in Fig. 4a, except that the stiffness
coupling parameter is reduced from ¢, =1.0 to a, = 0.75; i.e., from very strong
to strong stiffness control coupling . This change decreases the levels in Fig. 4a
as compared with those in Fig. 3e. The decrease is, however, slight. A more
drastic decrease in levels occurs in Fig. 4b as compared with Fig. 3e. In Fig. 4b
the stiffness coupling parameter is .= 0.15, whereas in Fig. 3¢ a,=1.0. This
decrease in levels is largely related to the difference in the coupling strengths. In

Fig. 4b the coupling strength is moderate.




Page 22

2. The format of Figs. 4a and 4b is reproduced in Figs. 5a and 5b, respectively,
except that the stiffness coupling form is changed to a gyroscopic coupling form;
namely, a, =m,=0, g # 0. In Fig. 5a the coupling is strong; g=0.75, and in
Fig. 5b the coupling is moderate; g=0.15. The similarity between Figs. 4 and 5
is obvious. Also obvious is the slope in the curves in Fig. 5. This slope is
characteristic of the gyroscopic coupling. The gyroscopic cdupling enters in the

form of (g/y) and not merely in the form of (g). [cf. Eq. (8).]

3. The format of Figs. 4a and 4b is reproduced in Figs. 6a and 6b, respectively,
except that the stiffness coupling form is changed to a mass coupling form;
namely, a.=g=0, m,# 0. In Fig. 6a the coupling is moderate; i, =0.15, and
in Fig. 6b the coupling is weak; 7,=0.03. The similarity between Figs. 4 and 6
is obvious although the levels in the former are higher than in the latter, largely

in consequence of the disparities in the coupling strengths.

4. Finally, the format of Fig. 4a is reproduced in Fig. 7, except that the stiffness
coupling form is modified to accommodate, in addition, another form of
coupling. In Fig. 7a the additional coupling form is mass control; namely:
a, =m,=0.75[a=0.1.], g=0, which is a very strong coupling strength. In
Figs. 7b, 7c and 7d, the additional coupling is gyroscopic control; namely, in Fig.
7b: a,=0.53[a=0.43.], g=0.54, m, =0, which is a strong coupling strength,
in Fig. 7¢: @, = 0.10[@=0.9.], g = 0.11, m,= 0, which is a moderate coupling

strength and finally, in Fig. 7d: a, = 0.02[¢=0.98.], g = 0.022, /1, =0, which
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is commensurate with a weak coupling strength. The levels in these figures are
set largely by the coupling strengths; the higher the coupling strength the higher
the levels.

In the normalized frequency range of concern, the levels in Figs. 3-7 that
pertain to modal overlap parameters (b) that are small compared with unity; e.g.,
b =(0.1), undulate. On the other hand, again in the normalized frequency range
of concern, the curves in Figs. 3-7 that pertain to modal overlap parameters that
exceed unity; e.g., b=(2.0)and (10), are reasonably smooth. A few questions
arise: Can these features be estimated by replacing the summation in Eq. (8d) by
an integration and if so, can this integral be performed with ease? Can the result
of this performance interpret the response behavior of the master oscillator in
terms of the various parameters that define the complex? And last, but by no
means least, what about the undulations, do they feature in the result of this

integration?
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V. Replacing a Summation by an Integration

The index (r)is given a continuous connotation and the summation in Eq.

(8b) is replaced by integration. Under a condition that allows this replacement,

Eq. (8b) assumes the form [1]
. 3 r(i"'E) . _
56) - im0 = 0 [ de, O ) )1
{1 - {z()Y A+inF 1 [7, () ~{z,(F)Y (A + in, ()] - [5,F)/ y P} »
{[1+7,(F)] - [{z,(F)}* A+in, FH]~ 1)
where
[7.F)/ yF = 4, (F) {z,(FY (+in, (7)) +I(EF)/ yP;
AF)=pF) R+ f(F)dz,(F) = dF ; {z,(F)Y = (27} + {z,(F))2;

E=eR+)7; (R+%)=R+e)(R+1)! (22)

If n,(7) is small enough so that the vanishing of the real part of the denominator

in the integral in Eq. (20) predominates the values of the integral, the integral

yields
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(SG)-in)}y=(x12)y’ Lf ) @) N+, )T V2 [, () (2. F)F 1+
272 107 {2 )P 1o )+ 47, (P e )Y e )
=i, (7)) ~{z. ()Y T + [{2(7) 2. F)Y n ) n G+ () yF 3T, (23)
where
&)<r, < (R +%);
{z, B} = (1+7,) = {z(7)Y + {z.(%)};

{z, B)Y m, (F)={z(5)Y n(7) + {2 (7)Y 1.(F) - (24)

Equation (24) defines the specific value of (7,)and it is recognized that (7,)is a

function of (y) and vice versa. Adopting the impositions and the simplifications

that are conducted in Eqgs. (16) and (18), one may derive from Egs. (23) and (24)

the result
1;(»)=D[C + O{n(»}*1; n,(N=>n,(»)=DC, (25)
with
D = [#/2¢(R) 1 [M, (MBI [+ 7,)T, (26a)
C = [, +a.)* +(E/y)*1, (26b)

0 =[(+7,-a,)a, ], (260)
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and where

F@)=la+a)? y RGP T u)=(M,/MR), (26d)
1) =n0) =@ /DyR®WY s 1) =n.) =0, (7), (26€)
A+m)=(@+ap); [+ / ATV <y < [1-(/217 V2. (26

The underlying condition of the validity on Eq. (25) is detailed in Reference 1.
This condition holds even though the coupling forms are elaborated to include
not only a weaker stiffness coupling, but also mass and gyroscopic coupling
forms. Moreover, the coupling parameters may define various degrees of
coupling strengths. Strictly, the validity of Eg. (25) demands the equality of
75 (y) to the primary term n;(y). This equality designates n;(y)the first order
approximation to 7,(y). The term 0{77(y)}2 is of the order of the higher
approximations to the integral, notwithstanding that situations exist in which 0O)
is identically zero; e.g., when the satellite oscillators are sprung-masses for which
a. =1, g=m,=0. [cf Eq. (20).] In these situations the equality of the
integral evaluation of 7,(y)to 77;(y) need not be specifically invoked. (More on
this subject when in a subsequent paper higher order of approximations, than the
first, are to be evaluated.) Clearly and significantly, the primary term 7;(y) and,

therefore, the first order approximation of 7,(y)is independent of the modal

overlap parameter (b). Without much-a-do, in this paper the first order approx-
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imation only is implemented and considered. In this approximation the first
order approximation to 1n,(y) is the primary term 77;(y).

Equation (25) reveals the parametric composition of the first order
approximation to the induced loss factor 77,(y) = 7;(y). Again, one is remind-
ed that the induced loss factor 7),(y)describes the influence of the coupled
satellite oscillators on the loss factor in the impedance of the master oscillator.
In the absence of couplings this loss factor is (77,); in the presence of couplings it
is [n,+71,(»)]. Since the satellite oscillators add merely passive elements to the
complex, 77,(y)is invariably positive. Equation (25) confirms this statement and
exposes the proportionality of 77;(y)to (D). Therefore, 77;(y) is directly proport-
ional to the mass ratio(M;/M); it is estimated that for a reasonable complex
with (M, /M) equal to about a tenth, (D) is of the order of unity. [cf. Eq. (19).]
The quadratic dependeﬁce of the primary term 7;(y) of 7,(y), in terms of (C),
which entertain the term-components (7, +a,, > and (g/y)?, is of significance.
Again, it is emphasized that the primary term #;(y)is the true first order
approximation to 77,(y); in this context the term D O{n( y)}2 is superfluous. In
any case, Eq. (26) indicates that this term in 7,(y) is rarely dominant even when
the loss factor 77(y)of a typical satellite oscillator exceeds any of the coupling
parameters; m,, @, (g/y) <n(y), notwithstanding that in the absence of any
couplings 7,(y), as stated in Eq. (25), is negligible on account of both, C =0
and O =0. On the other hand when couplings do exist, in both, the first order

approximation and the exact evaluations of 7,(y), the levels are certainly not
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negligible, even if the couplings are weak. [Note that (77,)of the order of
(1 0'4) is not unreasonable [12].]

As already discussed and demonstrated in Figs. 3-7 the curves for a modal
overlap parameter (b) that is small compared with unity; b << 1, possess levels
that are undulated. The excursions in the undulations are the more pronounced
the smaller is the value of (b) [11]. [cf. Fig. 3d.] As(bd)increases, approaching
and exceeding unity, the undulations, again true to form, are suppressed. As
already intimated in Section III, increasing (b)beyond unity brings in the
phenomenon of erosion which worsens as the modal overlap parameter (b)
reaches higher and higher above unity. A remarkable property of the first order
approximation (FOA) of 7,(y) [=7;(y)] emerges when this quantity is
superimposed on the respective Figs. 4-7. [cf. Figs. 3d, 3e and 3f.] It is now
observed, in these figures, that the mean-value averaging of the undulations of
the exact levels of 7,(y), when (b) is small compared with unity; b<<1,
converges onto the first order approximation (FOA) of 7,(y) [1, 14]. Since, as
already observed, the first order approximation; namely, 7,(y), is independent
of (b) this convergence is without erosion and, of course, remains so. [cf. Figs.
3d and 3e.] The independence of 77;(y) of (b) has been stretched by some to
conclude that(b) may be rendered, a priori, equal to zero. Neglecting to mention
in this rendering that mean-value averaged levels are substituted for highly
undulated levels, is not a viable scientific procedure, unless ignorance is bliss
[11]. On the other hand, when (b) approaches and exceeds unity, the exact

levels become free of undulations, but these levels erode with further increases of
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(b). The erosion in the exact levels, when (b) increases beyond unity,
commences and progresses from the levels of the first order approximations. To .
account for this progressive dependence on (b), higher order approximations are
clearly required. What is doubtful is whether higher and higher order
approximations can account for the undulations when (b) needs to remain small
compared with unity. To account for the undulations an entirely different
approximation procedure is thus called for. In this paper devising such an

approximation procedure is not attempted.
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" VI. A Typical Member of an Ensemble of Complexes Supporting

Various Parametric Combinations

In the preceding evaluations the distribution of resonance frequencies

(x,,) and the assigned loss factors (7,,.) for the satellite oscillators are sequen-

tial functions of the normalized index (7). These two quantities, exemplified in

Figs. 2a.1, 2b.1 and 2c.1 and in Figs. 2a.2, 2b.2 and 2c.2, respectively, may be

smoothed out by extrapolation and interpolation into monotonic and continuous

functions of (7); (F)=[r(R+ 1)~1 1. This kind of smoothness is rarely found in
practice and a question arises as to what are the expected consequences of more
practical assignments for these parameters and others? In this section a few
layers are removed in the quest to discover the phenomena that may be
encountered in the induced loss factor 7,(y) by the insertion of these more
realistic parametric values. Since the assignment for the parameters that define
the satellite oscillators and their couplings to the master oscillator can hardly be
drawn, a more generalized approach is undertaken to investigate the influence of
introducing variations in these parametric values. In particular, in this section
two parameters are selected to carry these variations; either individually or in
unison. In the first, the index (r) of a satellite oscillator is assigned a pseudo-

statistical value. [Pseudo-statistical is in reference to a sample selected out of an
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ensemble of random samples.] The index (r)is distributed sequentially and
fractionally, in the range 1<r <27. A pseudo-statistical index is designated
A(r), where A(r) < A(g); g=(r+1); 1<r<(R-1). [cf. Eq. (9b).] In the
second, the modal overlap parameter (b,)is assigned a pseudo-statistical value
that is distributed in the ranges (2)> b, > (0.1) and (3.5)2>b, 2(1),

respectively. The distribution of A(r) and of (b,), withR =27, that are

employed in this section are depicted graphically in Figs. 8a, 8b, and 8c. The

two-vector {(x,,), (1,,)}(R), as stated in Eqgs. (16) and (18), is typically
depicted, for the pseudo-statistical values shown in Figs. 8a, 8b, and 8c, in Figs.

9a, 9b, and 9c, respectively. Figure 9a depicts (x,,) as a function of A(r) and
Figs. 9b and 9c depict (7,,), as a function of (7 ), where A@) =[A®() (R+1)'1]

and ¥=[r (R+1)"1]. [cf. Fig. 2a.] It is observed, in Fig. 9a, that the pseudo-
statistical variations embody the phenomenon of mode bunching in which
variations in the modal density of the satellite oscillators drastically vary as a
function of A(r) [17]. On the other hand, as Figs. 9b and 9c show, the loss
factor (7,,), as a function of (r), faithfully follows the variations assigned to
(b,). In Fig. 9b some of the values of (b,)are less than unity, in Fig. 9c all the
values of (b,) are in excess of unity.

The influence of the Variations, described in Fig. 8, on the induced loss

factor 7,(y), as a function of (y), is exemplified in Figs. 10 and 11. Each figure
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represents a set of figures. The first figure in each set; e.g., Fig. 10a, depicts the

base situation in which A(») =7 and b, =1. The second figure in each set; e.g.,

Fig. 10b, depicts the situation in which A(r) is as shown in Fig. 8a and b, =1.

The third figure in each set; e.g., Fig. 10c, depicts the situation in which

A(r)=r and (b,)is as shown in Fig. 8b. The fourth figure in each set; e.g.,
Figure 10d, depicts the situation in which A(r) =7 and (b,) is as shown in Fig.
8c. The fifth figure in each set; e.g., Fig. 10e, depicts the combined situation in
which A(r) and (b,) are as shown in Figs. 8a and 8b, respectively. Finally, the
sixth figure in each set; e.g.., Fig. 10f, depicts the combined situation in which
A(r) and (b,) are as shown in Figs. 8a and 8c, respectively. It is recognized
then that each set of figures presents a complete evolution in the process of
applying the pseudo-statistical variations depicted in Fig. 8 to the two parameters
A(r) and (b,). Also, each set selects a specific coupling form and a specific
coupling strength. Thus, Fig. 10 pertains to a strong stiffness coupling:
a,=1.0[a=0.0.], m, =g =0, and Fig. 11 pertains to a mix of stiffness and of
gyroscopic coupling of moderate strength: &, = 0.1[a =0.9.], g =0.11, m_= 0.

(o]

[cf. Figs. 3e and 7c.]
The first figure of each set; namely, Figs. 10a and 11a exhibit undulations
in the levels of the induced loss factor 7,(y), as a function of (y). However,

these undulations are small and they are completely suppressed as soon
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as (b, ) approaches the value of (2). [cf. Fig. 3b.] The variations depicted in Fig.
8 are clearly discernible in all the subsequent figures in the series entitled Figs.
10 and 11. True to form, there is but a tinge of edge erosion in Figs. 10a and
11a, yet in the likes of Fig. 3b stronger sign of erosion has already reared its
head. From Figs 10a and 11a to Fig. 3b, (b) is changed from unity to merely
two. To confirm this statement and to provide for convenient and interpretable
data from which to judge the more erratic data that incorporates the pseudo-
statistical variations, the first order approximation of 7,(y), given in Eq. (25), is
superimposed on Figs. 10a and 11a and on all other figures in the series entitled

Figs. 10 and 11.

Again, the pseudo-statistical variations are defined by two competing and
nearly independent factors, i.e., by A(r) and b(r)[=(b,)]. In Figs. 9a, 10b and
11b; it is observed that at a mode bunching (a rich modal density) region the
influence of the satellite oscillators is more pronounced than at a mode sparsity

(a poor modal density) region [17]. On the other hand, when the modal overlap
parameter (b, ) entertains Valﬁes that are small compared with unity, the levels as
a function of (y), tend to fluctuate. The fluctuations are pronounced at and in the
vicinity of the resonance frequencies of those satellite oscillators to which these
small values of (b,)are assigned. At and in the vicinity of the resonance
frequencies of those satellite oscillators to which (b,) are assigned values that

approach and exceed unity, no such fluctuations are present; e.g., see Figs. 10c
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and 1lc, and Figs. 10d and 11d and contrast them, respectively [18]. When

variations in both parameters are combined, both characteristics can be identified
in the levels of the induced loss factor 7,(y); e.g.,’ see Figs. 10 and 11 and

contrast, in particular, Figs. 10e and 11e with Figs. 10f and 11f.
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Appendix A

The sweeping assumptions rendered in Eq. (15), which leads to Egs. (9d)
and (16), culminating in Eq. (18), may be introduced more gradually. The
purpose for this Appendix is to effect such a gradual introduction. In this manner

when some of these assumptions are relieved, reevaluation of the induced loss
factor n,(y) may be readily instituted.

From Egs. (9¢) and (12), the design demands that
(a, + a,,) (x°)* = (1+m,,) for F=(1/2), (A1)

and if (x?) becomes, by design, unity at 7 =(1/2), the expression reduces to

(e, +a,)=(1+m,) for ¥ = (1/2). (A2a)

From Eq. (12) it is observed with satisfaction that (x7) is, indeed, unity at

7 = (1/2). On the other hand, from Egs. (10) and (11) one obtains

(x, )2 n = (5, /2) [0{x, (x;’)z}/ar I (e )2 Ner = (b, 12) [o{e, (xr?)z}/ar] 5

e = [2(, +00 ) (0P T 4B, [0(@, (x2)2}/ 0 1 + by, [0at, (x0)?3/ 01}, (A3)

where again, () is allowed to have a continuous connotation as explained in
Reference 1. In particular, if the spring factors (@,) and («,,) are independent

of (r), Eq. (A3) simplifies to read
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=G I DR L 1 = G/ YR ];
Mr = Brllers =05 Qu=0, (A4)

where (x7) is extrapolated and interpolated to become a continuous function of

@)
[(@In(x? /o)) = (R+D)~ [y(R)(x7)? 1, (A%)

(B, by) = (@ + @) [(B, @)+ (b, @), (A6)

b =[(xb)R+D)']; by =[(mb,)R+D'], (A7)

and from Eq. (A2a), by design
(a+a,)=(1+m,). (A2b)

From Egs. (10)«(12) and (A2)«(A7) one may cast the designed two-vector in the

form

{G5), @ 3R = {0+, (B} + (), (1} (B, (A8)
{(0)s (170} R) ={(x9), (bey I )Y (RY (30 1}, (A9)

where
(+7,) " [a(b, /b,)+a,] ; b, #b,, (A10a)
Br =5 A+m,) a(b/b,)+a,); b,=b, b,=b, (A10b)

= ,B=

1 s b=b.=b,,  (A10c)




Page 37

the quantities (,), (x°), 7(R) and (l?c,) are stated in Egs. (1d), (12), (13) and
(A7), respectively, and the superscript (o) in (x,,) and (7,,) recognizes that

(x%) and (775.) are restricted to specific impositions. [cf. Eq. (4).] For the sake
of computational and interpretive advantage the validity of Eqs. (A4) and (A10c)
is universally adopted in this paper. [cf. Eq. (15).] Under this imposition, Egs.

(A8) and (A4) simplify
(e, () R) = {A+m )2 (x0), n(P)} s B=[xb)R+D7'],  (AlD)
NFY =1, =g = Ny 1F) = B/ DVR) (2], (A12)

where (x°) is stated in Eq. (12), and (f,) becomes equal to unity. [cf. Egs.

(18a) and (16).]
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Fig. 1a. A master oscillator attached to a set of sprung-masses.
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Fig. 1b. A set of satellite oscillators coupled to a master oscillator.
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index (7), respectively. (*)

c.l and c.2. As in Fig. 2a, except that (7,) is changed from (0) to (0.75).
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- Fig. 3. Induced loss factor 7,(y) [= 72(y)], as a function of (y), for a stiffness

control coupling form with ¢, =1.0 [@#=0.0.], g = 7, = 0. [Sprung-masses.]

a. With b = (0.1)

b. With 5 = (2.0)
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Fig. 3. Induced loss factor 77,(y) [= 77 (»)], as a function of (y), for a stiffness
control coupling form with o, =1.0 [@=0.0.], g =, = 0. [Sprung—rriasses.]
c. With 5 =(10)

d. A superimposition of 5 = (0.01), (0.1)and (0.3), and (FOA). *)
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Fig. 3. Induced loss factor 7,(y) [= 77 (»)], as a function of (y), for a stiffness
control coupling form with o, =1.0 [@=0.0.], g = m, =0. [Sprung_-rhasses.]

e. A superimposition of a, b, and ¢, and (FOA).

f. Asin 3.e above except that R = (7) and not (27).
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Fig. 4. Induced loss factor 7,(y), as a function of (y)," for a stiffness control
coupling form. [R =27 and (M,/M)=0.1.]
a. o, = 075[a =025, g=im,=0. [Strong coupling.]

b. a,=0.15[x¢ =0.85], g=im,=0. [Moderate coupling.]
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Fig. 5. Induced loss factor 7,(y), as a function of (y), for a gyroscopically

controlled coupling form. [R =27 and (M,/M)=0.1.]

a. a, =m, =0[a=1.0.], g=0.75. [Strong coupling.]

O[a =1.0.], g=0.15. [Moderate coupling.]

b. a, =m,
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Fig. 6. Induced loss factor 7,(y), as a function of (y), for a mass control
coupling form. [R =27 and (M,/M)=0.1.]
a. a, =g =0[a=1.15], m, =0.15. [Moderate coupling.]

b. @.=g =0[a =1.03.], 7, =0.03. [Weak coupling.]
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Fig. 7. Induced loss factor 7,(y), as a function of (y), for mixed control
coupling forms. [R=27and (M;/M)=0.1.]
c=m,=075[a=1.0.], g=0. [Very strong coupling.]

b. o, = 0.53[@=047], §=0.54, m, =0. [Strong coupling.]
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Fig. 7.

coupling forms. [R=27 and (M;/M)=10.1.]

Induced loss factor 7,(y), as a function of (y), for mixed control

c. a,=010[@=0.90.], g=0.11, m, =0. [Moderate coupling.]

d. a,= 0.02[x=0.98.], g=0.022, m,=0. [Weak coupling.]
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